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Effect of External Forcing on Droplet Dispersion in a
Developing Shear Layer

S. K. Aggarwal* and Y. Xiaof
University of Illinois at Chicago, Chicago, Illinois 60680

The dynamics and dispersion of nonevaporating droplets in a forced transitional shear layer are studied. The
shear layer is formed by two coflowing parallel streams downstream of a splitter plate. The effects of periodic
forcing on the dynamics of large-scale vortical structures and on the dispersion characteristics of droplets in a
spatially and temporally developing shear layer are investigated. Results indicate that by forcing the shear layer
at the first subharmonic of the fundamental mode, the droplet dispersion can be enhanced significantly. The
forcing at the fundamental mode increases droplet dispersion in the initial part, but then decreases dispersion
farther downstream. These results are consistent with the previously published experimental and numerical
results on the effect of forcing on the shear layer growth. It is also observed that the forcing causes a relatively
larger gain in dispersion for intermediate size particles compared to that for gas particles, implying that the
centrifugal mechanism may be strengthened by forcing. The dispersion enhancement is more pronounced in
the initial part of the shear layer, which is perhaps the more important region for improved droplet dispersion
and mixing in spray applications.

Introduction

P ARTICLE-LADEN turbulent flows occur in numerous
technological and environmental systems. The traditional

approach for modeling these flows is based on the assumption
that the turbulence is isotropic and statistical in nature. The
turbulent properties are then obtained from the average be-
havior of the turbulent carrier fluid by using the time- or
Favre-averaged governing equations along with some semi-
empirical turbulence models. The dispersed phase is repre-
sented by a large number of discrete particles, and their dy-
namic behavior is determined in a deterministic or a stochastic
manner.

A number of experimental and computational studies,1"7

published during the last two decades, have demonstrated that
the turbulent flows, which previously were thought to be to-
tally chaotic and statistical in nature, are dominated by large-
scale coherent vortical structures. This has caused a major
shift in thinking as to how the dynamics of turbulence be
perceived and modeled. In fact, a number of important ques-
tions have been posed by these studies. How useful or relevant
are the semi-empirical models based on the Reynolds- or
Favre-averaged approach? To what extent are the mixing and
entrainment processes influenced by the dynamics of orga-
nized structures? How is particle dispersion behavior affected
by the large-scale structures, and in turn, how are these struc-
tures influenced by the dispersed phase? What are the effects
of these structures on the gasification behavior of fuel drop-
lets? How do the dynamic interactions between the large
structures and droplets influence the fuel vapor distribution,
and, consequently, the ignition, extinction, and combustion
processes? Although the results reported in Refs. 1-7 have
not provided satisfactory answers to these questions, they
have seriously challenged the adequacy of the traditional ap-
proaches for accurately describing the turbulent two-phase
flows.
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Further interest in the study of large-scale structures stems
from the fact that by manipulating these structures, one may
be able to control and enhance the performance of systems
whose dynamics is strongly influenced by these structures.
The experimental investigations of a forced mixing layer by
Ho and Huang8 and Oster and Wygnanski9 clearly indicate
that the initial condition has a long-lasting effect on the de-
velopment of the mixing layer. These studies further show
that the spreading rate of the mixing layer can be manipulated
by forcing at a subharmonic of the natural instability fre-
quency. If the forcing can have such a strong effect on the
dynamics of large-scale structures in a mixing layer, it is then
natural to ask what influence does the forcing have on the
dynamics of particles injected into the layer?

The present study investigates the effect of periodic forcing
on dynamics and dispersion of nonevaporating droplets in-
jected into a transitional shear layer. The purpose is to study
both qualitatively and quantitatively what influence the forc-
ing of the shear layer has on the dynamics of large-scale struc-
tures, and thereby on the dispersion characteristics of drop-
lets. The investigation focuses on the initial development of
a spatially developing shear layer, where the dynamics are
controlled by large spanwise structures. In terms of energy
spectrum, it implies that most of the energy is in large-scale
structures. The effects of forcing frequency and amplitude are
investigated first on the initial roll-up and vortex merging,
and then on the dynamics and dispersion behavior of droplets.
In this article, a two-dimensional shear layer is simulated. The
effects of small-scale structures and other three-dimensional
features on droplet dispersion are not considered. These as-
sumptions are justified by the numerous experimental and
computational investigations (following the classical experi-
ments of Brown and Roshko1) that demonstrate the persis-
tence of spanwise structures over a large distance in the
streamwise direction. In addition, some recent experimental
studies6-7 clearly indicate that the droplet dispersion is mainly
controlled by the large spanwise structures. The present study
is aimed at examining how the dispersive action of these struc-
tures is modified by external forcing.

Previous works on mixing layer simulations have employed
spectral,10 vortex dynamics,11 and finite difference12"14 tech-
niques. These studies have focused on the dynamics of large-
scale structures in temporally developing mixing layer11 and
spatially developing layers.13-14 The former approach is com-
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putationally more efficient because of the relatively compact
spatial domain. However, the spatially developing case more
closely resembles laboratory as well as practical situations. In
addition, this approach is able to capture some important
features, such as asymmetric mixing,12-15 that are not predicted
by the temporal approach. Previous studies on the particle
dynamics in mixing layers have used the vortex dynamics16-17

as well as finite difference18 approaches for the gas phase,
and a Lagrangian approach for the particles. However, none
of the previous studies reported so far have investigated the
influence of forcing on the particle dynamics and dispersion.

Physical Model
The shear layer considered in the present study is formed

by two coflowing parallel streams downstream of a splitter
plate. A schematic of the physical model is shown in Fig. 1.
The computational domain is marked by a broken line. The
droplets of given size and velocity are injected at specified
cross-stream locations at the inflow boundary (x = 0).

The governing equations for the carrier fluid are the time-
dependent, two-dimensional equations for the conservation
of mass, momentum, and energy. The source terms appearing
in these equations due to the exchange of mass, momentum,
and energy with the dispersed phase are assumed negligible
in the present study since the number of droplets considered
is typically less than 2000. In other words, the droplets are
influenced by the gas phase, but not vice versa. This is a
reasonable assumption since the focus of this article is to
examine how the dynamics of droplets is influenced by the
large-scale structures in the initial region of a perturbed shear
layer. Further details of the gas-phase equations are provided
in Ref. 18.

The equations governing the dynamics of droplets can be
written as

dt

dVn

(1)

(2)

where Xp and Vp are, respectively, the position and velocity
vectors for a droplet represented by the subscript p, pp is the
material density of the dispersed phase, and rp is the droplet
radius. The force F in Eq. (2) is assumed to be due to the
drag force on the particle. This implies that the contribution
of the flow nonuniformities, flow acceleration, Magnus effect,
and Basset history terms18 to F are negligible in comparison
with the drag term. Based on a scale analysis, Lazaro and
Lashearas7 found these contributions to be negligible. This
is, however, not a limitation of the present study. Moreover,
as discussed by Faeth,19 these terms can be neglected when
pplp ~ 103. For the results presented here, pp = 1.0 gm/cm~3

Fig. 1 Schematic of the physical model and the computational do-
main.

and the initial gas density is taken as 1.182 x 10 vgm/cm \
F is given by

F= C^irrfrlV- Vp\(V - Vf))

Re,, =
2p\V - V,,\r,,

(3)

(4)

(5)

where the drag coefficient Ctl is assumed to be given by the
solid sphere drag correlation.19

Boundary Conditions
The free slip boundary conditions are specified at the top

and bottom boundaries of the computational domain. At the
left boundary, the inflow density and velocity are specified,
and the pressure is allowed to float by employing a zero-
gradient condition. This implies that the pressure at the guard
cell, which is just outside the inflow boundary, is determined
by the pressure at the first internal cell. As discussed by Grin-
stein et al.,12 this allows the pressure at the inflow to adjust
to the disturbances arriving from downstream, and the feed-
back mechanism to retrigger the instability. A step function
as well as hyperbolic-tangent velocity profiles were used at
the inflow boundary. The dynamics of large-scale structures
as well as droplet dispersion behavior were found to be rel-
atively insensitive to these velocity profiles.

A periodic forcing of the streamwise velocity component is
employed to perturb the shear layer. The velocity boundary
condition at the left boundary is then specified as

V, = 1 + am sin(>v,,,0 (6)

where V0(y) is the streamwise velocity at the left boundary
for the unperturbed case, and M specifies the number of
forcing frequencies used.

In the present investigation, a single forcing frequency is
used, i.e., M = 1. The forcing frequency is related to the
natural instability (roll-up) frequency of the shear layer as

wn = (lln)(2irf) (7)

where n is an integer. Note, for example, n = 2 corresponds
to a forcing at the first subharmonic of the fundamental mode
of the shear layer. Thus, the effect of forcing is considered
by imposing a sinusoidal perturbation of a fixed frequency o>,
and relative amplitude a{ on the inflow axial velocity profile
which is time-independent for the unforced case. The effects
of forcing amplitude and frequency on the dynamics of large-
scale structures and droplet dispersion are discussed in the
next section.

A subsonic flow simulation requires a special treatment of
the boundary conditions at an outflow boundary. The zero-
gradient boundary conditions are employed for the density
and velocities. The pressure at the guard cell, which is one
grid length downstream of the last computational cell, is cal-
culated by using

pg = pn + (XK - - Pn)l(XK - Xn) (8)

where the subscripts g and n refer to the guard cell and the
last cell in the computational domain, respectively. X is the
location of the inflow boundary, and p.imh is the pressure far
away from the outflow boundary. The above equation is ob-
tained by interpolating the pressure values pn and /7amh. Ad-
ditional discussion regarding this boundary condition and the
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effects of outflow boundary conditions, in general, can be
found in a more recent study by Grinstein.20

The initial conditions for integrating the droplet equations
involve the specification of Xp and Vp at a specified initial
time. The initial droplet velocity is assumed to be the same
as that of the slow gas stream. Note, however, that the dis-
persion behavior was found to be the same as the initial drop-
let velocity is varied between the slow-stream and fast-stream
velocities. The initial X position for all the droplets is the
inflow boundary, i.e., Xp = 0, whereas the initial Yposition
is varied in a parametric manner. For the base case, five cross-
stream injection locations are specified. This means that start-
ing at a given initial time, five droplets are injected with a
specified frequency. The dynamics and dispersion behavior
of these particles is then computed by numerically solving
Eqs. (1) and (2). Note that the solution of these equations is
coupled dynamically with that of the gas-phase equations that
are also being solved simultaneously.

Numerical Procedure
The numerical scheme to solve the two-phase equations is

based on a Eulerian-Lagrangian formulation. The algorithm
to solve the Eulerian gas-phase equations is based on the flux
corrected transport (FCT) methodology.12 The particle equa-
tions are integrated using a second-order Runge-Kutta pro-
cedure. The generic algorithm employing the FCT procedure
has been tested extensively for large-scale simulations of both
nonreacting and reacting flows. It employs a time-step split-
ting, monotone, finite difference technique. Since the code is
based on the solution of a one-dimensional conservation equa-
tion, a direction-splitting technique is employed for multidi-
mensional computations. It is important to note that the FCT
algorithm, in the present study, is used to resolve the large-
scale features of the flow in the transitional region of the
shear layer. As discussed by Boris et al.,21 the FCT approach
is similar to large eddy simulation (LES) with implicit (built-
in) subgrid models, and may be termed as monotone inte-
grated large eddy simulation (MILES). Numerical evidence
as well as physical arguments are presented by Boris et al. to
calibrate MILES for large eddy simulation.

Starting at time t = 0, the gas-phase equations are inte-
grated to simulate the dynamics of large-scale vortical struc-
tures. At a specified time during this simulation, the droplet
injection is started. The droplets' trajectories are tracked by
solving Eqs. (1) and (2) by using a second-order Runge-Kutta
method. Note that the particle locations in general do not
coincide with the fixed gas-phase grid points. A two-dimen-
sional interpolation is employed to calculate the gas-phase
properties, such as velocities and density which appear in Eqs.
(3) and (4), at the instantaneous droplet locations.

Discussion of Results
The physical model used for shear layer simulation is shown

in Fig. 1. The splitter plate is located upstream of the left
boundary at y = 3.0 cm. Two coflowing streams, which form
the shear layer, are assumed to initially have the same tem-
perature and density. For the base case, the slow stream is
at the top and has a velocity of 20.0 m/s. The fast stream has
a velocity of 100.0 m/s. Note that the gas-phase algorithm
used in this study has been well tested previously by Grinstein
et al.20 and shown to reproduce the large-scale features of a
variety of flows that are observed in the laboratory experi-
ments. This includes the Strouhal number for the shear layer
roll-up and vortex mergings, the spatial distribution of merg-
ing locations, and the shear layer growth rate. We also con-
ducted an independent study22 to further establish the cred-
ibility of numerical results, and computed several cases, varying
the mean velocity (Reynolds number), velocity ratio, and
initial momentum thickness. The predicted Strouhal number
for all these cases ranged between 0.023-0.027, which is in
good agreement with the experimentally observed range 0.025-
0.031 reported by Hussain and Hussain.23

Effect of Forcing on the Dynamics of Large-Scale Structures
The first part of the study focuses on the dynamics of the

unforced shear layer in order to identify the optimum fre-
quency for perturbing the shear layer. The experimental re-
sults of Ho and Huang* and Oster and Wygnanski9 suggest
that the subharmonic forcing of the shear layer produces the
optimum enhancement in the rate of shear layer growth. To
obtain the dominant frequencies in the unforced shear layer,
the frequency spectra of the time-history of axial velocity
recorded at several streamwise stations is obtained. For the
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Fig. 2 Streamwise evolution of the amplitude of the roll-up, first
merging, and second merging frequencies for the unperturbed shear
layer.
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Fig. 3 Vorticity contours at t = 2.56, 2.72, 2.88, 3.04 ms for the
unperturbed shear layer.
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spectral analysis, the axial velocity is recorded starting at t =
2.4 ms, when the initial transients have become negligible.
The total time used in the time series contains at least 24 roll-
ups, and the frequency resolution in the spectral analysis is
244 Hz, which represents an error of 4.1% based on the roll-
up frequency. From the detailed spectral analysis, the dom-
inant frequencies are observed to be 5860, 2930, and 1465
Hz, which correspond, respectively, to the natural instability
(roll-up), first merging, and second merging frequencies. The
streamwise evolution of the amplitudes of these frequencies
is shown in Fig. 2. The amplitude of 5860-Hz frequency peaks
at x = 0.8 cm downstream of the splitter plate, implying that
the shear layer roll-up occurs at this location. Similarly, x =
1.1 cm and x = 6.0 cm, where the 2930- and 1465-Hz fre-
quencies attain their peak amplitudes, correspond to the first
and second pairing locations, respectively. These locations
are further confirmed by the vorticity contour plots shown in
Fig. 3. For example, the plot at t = 2.56 ms shows the second
pairing location at 6.0 cm, whereas the plot at t = 2.72 ms
shows the first merging location at about 1.2 cm. Note that
the first merging is observed to occur very close to the roll-
up location. Further details of the spectral analysis and flow
visualization are provided in Ref. 22.

The effect of forcing frequency on the streamwise evolution
of the spectral characteristics of large-scale vortical structures
is portrayed in Fig. 4. For these.results, the forcing amplitude
is maintained at a constant value of 1%, i.e., am = 0.01 in
Eq. (6). Figures 4a, 4b, and 4c show, respectively, the stream-
wise evolution of the fundamental mode (5860 Hz), the first
subharmonic, and the second subharmonic for the unper-
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Fig. 4 Amplitude evolution of the roll-up frequency a) first merging
frequency, b) second merging frequency, and c) for the unperturbed
and perturbed shear layers with forcing frequency as a parameter.
Forcing amplitude = 1 %.

turbed and perturbed shear layer. For the latter, the forcing
frequencies are 5860, 2930, and 1465 Hz. The important ob-
servation is that by forcing at the first subharmonic frequency
(ff = 2930) can yield a beneficial effect on the dynamics of
the shear layer. As clearly indicated by the amplitude evo-
lution of 5860- and 2930-Hz frequencies in Figs. 4a and 4b,
respectively, it causes the shear layer roll-up and the first
pairing to occur earlier compared to the unperturbed case.
However, the second vortex pairing seems to be delayed due
to this forcing. Also, forcing the shear layer at its fundamental
or at second subharmonic frequency does not seem to produce
any apparent desirable effect, i.e., the shear layer growth rate
does not seem to be enhanced by forcing at these frequencies.
The implication here is that the optimum forcing frequency
for enhancing the droplet dispersion may correspond to the
first subharmonic frequency. This is confirmed by the dis-
persion results presented in the next section.

Effect of Forcing on Droplet Dispersion
The droplet dynamics and dispersion behavior is studied

by simulating a continuous injection of droplets from the up-
stream boundary. The droplet injection is started at time =
4.8 ms. By this time, the initial flow transient is out of the
computational domain and the shear layer exhibits a quasi-
periodic behavior. For the base case, the injection process is
simulated over a period of 2.0 ms. This corresponds to about
12 shear layer roll-ups, and typically 1000-2000 droplets are
injected during this time.

The effects of forcing the shear layer at different frequencies
and amplitudes on droplet dispersion are characterized in
terms of the dispersion function which is defined as

D(t, N) [ N

I,i=t (y,<0 - (9)

where N is the number of droplets in the flowfield at time f,
Y{ the transverse location of a droplet at time t, and Yit, the
initial transverse location of the same droplet at the inflow

4.5

0.8

0.6-

g, 0.4-
.2
Q

0.0

Hyperbolic Tangent
Step

4.5 5.0 5.5 6.0 6.5 7.0

t, ms
Fig. 5 Effect of the total number of droplets and inflow gas velocity
profile on the dispersion function for the unperturbed shear layer.
Droplet diameter = 5 ftm.
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a)
4.5

4.5
b) t, ms

Fig. 6 Variation of droplet dispersion function with time for a) dif-
ferent forcing frequencies and b) amplitudes. The droplet diameter is
5 fjLm. The forcing amplitude is 2% in a), and the forcing frequency
is 2930 Hz in b),

boundary. The temporal variation of the dispersion function
for four different cases is given in Fig. 5. The important ob-
servation is that the droplet dispersion statistics are not sen-
sitive to the number of droplets employed in the simulation.
In addition, it is shown that the droplet dispersion behavior
is relatively insensitive to the inflow gas velocity profiles.

Figure 6 shows the effect of the forcing frequency and am-
plitude on the dispersion of 5-ju,m diam droplets. The droplet
Stokes number,24 defined as the ratio of droplet response time
to the characteristic flow time, for a 5-ju,m droplet is 0.45. The
droplet response time is defined as tp = ppd2

pl(\^), where
pp is the droplet material density, dp the droplet diameter,
and IJL the viscosity of the carrier fluid. The characteristic flow
time is based on the shear layer roll-up frequency. The im-
portant observation from Fig. 6a is that the droplet dispersion
can be significantly enhanced by forcing the shear layer at the
first subharmonic frequency (/ =2930). The maximum in-
crease in dispersion is approximately from 0.3 to 0.45. What
makes this change perhaps more significant is not so much
its magnitude, but the fact that it is produced by a forcing
amplitude of only 2%. The forcing at the second subharmonic
(/ = 1465 Hz) does not show any discernible effect on droplet
dispersion. The forcing at the natural instability frequency
enhances droplet dispersion in the initial part of the shear
layer and then decreases dispersion farther downstream. This
seems to be an important result with the implication that
forcing the shear layer at its natural instability frequency may
strengthen the roll-up process, but delays the vortex pairings,
which actually decreases droplet dispersion farther down-
stream. This is qualitatively in agreement with the results of
Korczak and Wessel,12 which indicate that forcing at the most
dominant frequency causes faster growth of the mixing layer
at the initial length and slower growth farther downstream.

Figure 6b shows the effect of the forcing amplitude on
droplet dispersion. As the forcing amplitude is increased, it
causes an increasingly greater enhancement in droplet dis-
persion compared to the unforced shear layer. However, the
gain in dispersion seems to saturate for a forcing amplitude

above 2%. In other words, the forcing amplitude.of about
0.02 appears to be optimum for enhanced droplet dispersion.
This is partially consistent with the experimental results of
Oster and Wygnanski,1' where it is shown that the small am-
plitude forcing of the shear layer tends to increase its spread-
ing rate, but at larger amplitude, the shear layer resonates
with the imposed oscillation.

Another way to demonstrate the effect of forcing on drop-
let dispersion is to plot the normalized dispersion function17

y(f, N) = D ( t , N ) / D K ( t , N) for the unforced and forced shear
layers. Here, D is the droplet dispersion function, and D\, is
the corresponding dispersion function for gas particles. The
plot of y vs time for different forcing amplitudes, shown in
Fig. 7, clearly indicates that the droplet dispersion relative to
the gas particle dispersion is further enhanced by forcing the
shear layer. (Here, the gas particle refers to a passive scalar
which is converted at the local flow velocity.) An important
implication is that the increase in droplet dispersion in a forced
layer may not be entirely due to the centrifugal action of the
large vortical structures. This centrifugal action6 is believed
to be responsible for enhanced dispersion for the interme-
diate-size droplets in an unforced shear layer. The present
results therefore imply that either the centrifugal action is
strengthened or perhaps another mechanism is in play for the
forced shear layer, causing further enhancement in dispersion
for the intermediate-size droplets. This is, however, a spec-
ulation by the authors and should not be considered conclu-
sive: It should also be noted that the increase in dispersion
due to forcing is more significant at an earlier time, i.e., in
the initial part of the shear layer.

Figure 8 shows yet another way to illustrate the effect of
forcing on droplet dispersion. The normalized particle distri-
bution, which represents the fractional number of droplets at
a given location, is plotted as a function of the cross-stream
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Fig. 7 Normalized droplet dispersion function vs time for different
forcing amplitudes.
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Fig. 8 Particle distribution in the cross-stream direction at different
times for the unforced and forced shear layers. Diameter = 5 /mi.
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Fig. 9 Normalized dispersion function gain vs time for different drop-
let diameters. The forcing frequency is 2930 Hz, and the forcing am-
plitude = 0.01. </0 corresponds to the fluid (tracer) particle, and d2,
</5, J10 and £/20 correspond to the 2-, 5-, 10-, and 20-/mi droplets,
respectively.

location. The results are given at t = 5.3 and 6.3 ms for both
the forced and unforced shear layers. Note that the particles
are injected, starting at t = 4.8 ms, from cross-stream loca-
tions between 2.96 < Y0 < 3.04 cm; the region marked by
two broken lines. Without dispersion, all the particles would
be confined to this region, and the distribution function would
maintain a value of unity there and zero outside. Due to
dispersion, however, the distribution curve becomes increas-
ingly broader with a lower peak. The important observation
from Fig. 8 is that there is higher droplet dispersion, indicated
by a lower peak and a broader distribution curve, for the
forced shear layer compared to that for the unforced layer.
Another noteworthy observation is that droplet dispersion is
asymmetric. Since the initial distribution is symmetric and
becomes asymmetric later with more particles on the slow
side, the droplets injected in the faster side of the mixing layer
(Y0 < 3.0 cm) are dispersed more than those injected in the
slower side of the mixing layer (Y0>3.Q cm). This asymmetry
in dispersion provides further evidence of asymmetric en-
trainment in the shear layer, observed experimentally by
Koochesfahani et al.15 and numerically by Grinstein et aL,12

Korczak and Wessel,10 and Aggarwal et al18. A very elegant
discussion of asymmetric entrainment is also given by Di-
motakis.25

As a final part of this study, an attempt is made to quantify
the droplet dispersion gain due to forcing for different droplet
diameters. The results are shown in Fig. 9, where AF is plotted
as a function of time; AF is defined as the change in the
dispersion function due to forcing normalized by the disper-
sion function for the unforced shear layer. The important
observation is that the droplet dispersion may be significantly
enhanced, especially in the initial part of the shear layer, by
forcing the shear layer at its subharmonic frequency. The
percentage gain appears to be greater for smaller droplets. It
is again noteworthy that the forcing causes a disproportion-
ately larger dispersion gain for the intermediate-size droplets
compared to that for the gas particles, as discussed earlier.

Conclusions
A large eddy simulation model is used to investigate the

effects of periodic forcing on the dynamics and dispersion of
droplets in a spatially developing transitional shear layer. The
spectral analysis of the axial velocity histories at selected spa-
tial locations in the forced shear layer is used to obtain the
needed information about the natural instability frequency
and its subharmonics. The effects of forcing frequency and
amplitude on droplet dispersion are then studied. The irn-
portant conclusions are as follows:

1) The droplet dispersion can be significantly enhanced by
a periodic forcing of the shear layer. The optimum forcing

frequency for enhanced dispersion corresponds to the first
merging frequency or the first subharmonic of the funda-
mental frequency of the shear layer. The optimum forcing
amplitude appears to be about 2%. The gain in dispersion
seems to saturate, as the forcing amplitude is increased above
this value.

2) The gain in dispersion for the intermediate-size droplets
appears to be greater compared to that for the gas particles.
This may have an important implication in that either the
centrifugal mechanism,6 discussed earlier, is strengthened, or
another mechanism is also in play for the forced shear layer.
However, this observation is based on a limited set of nu-
merical experiments, and cannot be considered entirely con-
clusive.

3) The present results are consistent with the previous
experimental4 and numerical11 result, which indicate that forc-
ing at the subharmonic mode enhances the spatial growth of
the layer, while forcing at the fundamental mode reduces the
growth rate.

4) The influence of forcing seems to be confined to the
initial region of the shear layer. This may, however, be quite
significant in practical applications, where enhanced disper-
sion and mixing are especially more desirable in the initial
region of the mixing layer. For example, in spray combustion
applications, an increased dispersion in this region would mean
that the droplets would get to the hot regions faster leading
to enhanced vaporization and mixing.

As a concluding remark, it should be mentioned that due
to some pioneering experimental studies,4 there is enough
evidence to indicate that the shear layer growth and entrain-
ment can be manipulated by forcing the shear layer at its
subharmonic frequencies. The present study provides another
confirmation. In addition, it demonstrates that the effect of
forcing at a subharmonic frequency can be extended to en-
hance the dispersion characteristic of particles injected into
the forced shear layer. A confirmation of this result is pro-
vided by two recent experimental studies,26-27 where it is shown
that the droplet dispersion behavior can be significantly mod-
ified by external forcing.
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