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ABSTRACT 
The flux corrected transport (FCT) method is used to solve the linear and nonlinear 
Burgers Equations and to compare with other commonly used explicit methods such 
as the central difference (CD), the upwind (UW), and the predictor correetor or 
MacCormaek (MC) schemes. The results show that the FCT scheme exhibits the 
best behavior for the linear as well as nonlinear cases. The amount of numerical 
diffusion is the least for the FCT scheme compared to the other schemes and more 
importantly there are no non-physical oscillations. 

Introduction 

In this paper various explicit finite difference schemes are examined to solve the widely 

known Burgers equation introduced about forty years ago by J.M. Burgers. The equation serves 

as a nonlinear analog of the fluid mechanics equations because it has terms which closely 

duplicate the physical properties, i.e., a convective term, a diffusive term, and a time dependent 

term. The Burgers equation also gives an analytic frame work for a second-order theory of finite 

amplitude dissipative sound propagation [1-3]. In addition, it has been used in discussions of 

shock structures in a Navier Stokes fluid, principally by Lagerstrom, Cole and Thrilling [4]. 

The distinctive feature of the Burgers equation is that it is the simplest mathematical 

formulation of the competition between convection and diffusion. It thus offers a relatively 

convenient means to quickly evaluate and compare finite-difference methods which one might 

wish to apply for more complicated partial differential equations. Another feature of the Burgers 

Equation is that although it does not have a pressure gradient term it still is a good approximation 
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of the propagation of one-dimensional disturbances. 

The present paper has two major objectives. The first is to test the flux corrected 

transport (FCT) scheme for solving the linear and nonlinear Burgers Equations for large cell 

Reynolds number Re^. The second objective is to compare the FCT scheme with the other 

commonly used explicit methods for large cell Reynolds numbers. The numerical schemes 

examined here are the central difference (CD), the upwind (UW), the predictor corrector or 

MacCormack (MC), and the flux corrected transport (FCT) schemes. 

Model Equation 

The model equation that has been used to perform the numerical experiments is 

. + - -  ~ (1) 

The linear case is obtained by replacing u, the coefficient of the convective term, by a constant 

c. In both cases, the equation obtained is a parabolic partial differential equation. The 

assumptions used in these equations are discussed in [5]. One important assumption on the 

finite-difference approximations is the small Mach number which permits the well known explicit 

stability condition [6] to be based not on the speed of sound but on the maximum flow velocity. 

The four numerical schemes studied are described next. 

Central Difference Scheme (CD) 

By applying a forward-time and centered-space difference to Eq. (1) the resulting 

algorithm is : 

[ ~ ; + 1  _ Uin 
At 

o r  

n • 5 

+ u ~  u m  - u~'_~ _ a u , . l  - ~ + u,_, + O [ A t , ( A x y ]  (2) 
2Ax (Ltx) 2 

II II 
u7 q = ,'li ut-1 + Bj u~ + C i um  

The coefficients &, Bi, and Ci are given by 

(3) 
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1 A¢ u "  (4) 

B i = 1 - 2 r  (5) 

1 A t  u • 
C t = r - ~ t (6) 

Where r = a At/(Ax) 2 and ~ = u ,~  At/Ax with u ,~  being the maximum value of  u. 

The first stability condition described in [6] requires that: 

v < 1  (7) 

This condition is required for all the schemes tested here. In addition, the central difference 

~ ,  ,: _2 (8) 
v 

method requires 

where the mesh Reynolds number Rea is defined as 

(9) 

For mesh Reynolds number slightly above 2/~0 the oscillations will cause the solution to "blow 

up" as expected from the stability analysis. 

The algorithm for the linear case differs from the non-linear one in that u, the coefficient 

of  the convective term, is replaced by c with the stability condition being the same as in the non- 

linear case. In both cases the resulting algorithm is explicit and first order in time. 

Upwind Scheme (UW) 

The upwind method uses backward differences for the convection term of Eq. (1). 

The numerical algorithm is given by Eq. (3), with the coefficients as 

At , (10)  A I -- r + ~ u l  

A t _ .  _ 2 r  B I = I - - ~ u  t (11) 

(12) C i = P  

For the linear case, once again u is replaced by c. The only stability condition for the linear as 
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well as non-linear cases is the well-known CFL condition given by Eq. (7). Note that there is 

no mesh Reynolds number restriction for the upwind schemes. 

MacCormack Scheme (MC) 

The MacCormack finite difference scheme [7] consists of two explicit steps: 

Predictor step: 

Corrector step: 

,¢.i -_ u? - ~u?(u,:, - u,'} + ,(u,'., - ~? + u,'.,) 

tl,,~ 
(13) 

where 

and 

1 .~[ " u,'} ~ I u,_, ui = ut" - ~.., (um + - ( u:' + " ) ] + v. ~ C ui~ - 

ui" ) - vt_! ( u;' - ul'1_~ ) ] 
2 

1 F,÷I] 

At 
I',.÷I = K.÷I 

(15) 

(16) 

u:÷1 I At s÷l 
= i[ l~i n + I~i n÷l - __ U;l'l( U; l÷l - l~i_ 1 ) 

AX (14) 
IJ÷l 

+ r ( u,l - 2u~ "÷' + ut'-; I } ] 

Here the barred quantities are evaluated in the predictor step. The corrector equation provides 

the final value of u at the same time level n + I. It has been shown [7] that the method does 

not have any cell Reynolds number restriction and is second order accurate in both time and 

space, again u is replaced by c for the linear case. 

Flux-Corrected Transport Scheme (FCT) 

Equation (1) is solved using the flux-corrected transport algorithm [8] consisting of the 

following four sequential stages: 

1. Compute the transported and diffused provisional values fi 
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1 1 (17) 

I e2 for smooth discontinuigy (18) V+I =- -  
i ~  2 i,½ 

The values of  variables at interface i+1/2 are averages of  values at cells i+1 and i, and the values 

at i-1/2 are averages of  values at cells i and i-1. At every cell i, the fii differs from the u i as a 

result of  the fluxes of  u, denoted F ~ .  The fluxes are successively added and subtracted along 

the array of  values u i so that the conservation of  u condition is satisfied by construction. The 

expressions involving ~,.~ are called the convective fluxes. 

2. Compute the raw antidiffusive fluxes 

The provisional values ~i must be strongly diffused to ensure positivity. A correction to 

remove this strong diffusion uses additional antidiffusion fluxes given by: 

(19) 

where 

1 

Antidiffusion reduces the strong diffusion, hut also reintroduces the possibility of  negative values 

or nonphysical overshoots in the new profile. 

3. Correct or limit these fluxes 

To obtain a positivity-preserving algorithm, the antidiffusive fluxes are modified by a 

process called flux correction where the corrected fluxes satisfy: 

v*_~ -- s.  max ~ 0, m~, ~ s. ( u,.2 - u,.~ ) ~,l ,r~._~ I ,  s .  ( u, - u,_, ) ~ (21) 
2 

to assure monotonicity. Here 

5 " algn ( ui÷ 1 - u t ) (22) 

The flux correction stage should not generate new maxima or minima in the solution, nor 

accentuate already existing extrema. 
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4. Perform the final antidiffusive correction 

u:-- F°I-  r ,  ) ~÷~ 

Stages 3 and 4 are the new components introduced by FCT. There are many modifications of 

this prescription that accentuate various properties of the solution. Some of these are summarized 

in [9]. 

Numerical Test Parameters 

The test problem employed to compare the performance of the various schemes is a wave 

defined as follow: 

0 s x < 0 . 5  u = u m ,  

0.5 < x s 1.0 u = 4.u~,(1-x)x 

1.0 < x s 5.0 u = 0.0 

For all the methods discussed in this paper Ax = 0.025, ct = 0.175, 0.0875 for all the values of 

Re A used. A summary of the test parameters used are tabulated in Table 1. 

TABLE 1 
Numerical Test Parameters. 

ReA 

Ax 

At 

1.43 

0.025 

0.001 

3.57 

0.025 

0.0004 

4.29 

0.025 

0.0005 

10.0 

0.025 

0.0002 

28.57 

0.025 

0.0002 

57.14 

0.025 

0.0001 

ct 0.175 0.175 0.175 0.175 0.0875 0.0875 

c 10.0 25.0 30.0 70.0 100.0 200.0 

Results 

Linear Case 

Results for the linear Burgers equation are depicted in Figs. 1-3. In general, the solution 
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exhibits a wavelike behavior with wave speed given by the constant coefficient of the convective 

term in the linear Burgers equation. The moving profile becomes smoother with time due to the 

effect of either real diffusion ( the term on the right side of Eq. (1))  or numerical diffusion, the 

latter arising as a result of discretization. As indicated in Fig. 1, the UW scheme has the highest 

amount of numerical diffusion. The more important observation from the figures is that the 

central difference (CD) scheme, as expected, becomes unstable as the cell Reynolds number Re A 

exceeds a value of 2.0. The comparison of Figs. lb and lc  indicates that the oscillations leading 

to instability in the CD solution appear earlier in time as Re d is increased. The other schemes 

give stable results at all Re A values, with the UW method being more diffusive. 

= (a) Re=1.43 ~ (b) Re=4.29  = (c lRe=10 .0  

O 

0.01.0 2.0 3.0 4.0 5.0 0.01.0 2.0 3.0 4.0 5.0 0.01.0 2.0 g.O 4.0 5.0 

X X X 

FIG. 1 
Results of Numerical Experiments with Linear Burgers Equation 

The comparison of MC and FCT methods is shown in Fig. 2. The solutions are almost the same 

except that the MC method exhibits more numerical diffusivity. In other words, the FCT scheme 

is better able to preserve the initial profile than the other explicit schemes studied here. From 

Fig. 3, similar observations can be made as in Fig. 2 except that the MC scheme shows some 

oscillations that become more pronounced, Table 2, as Re a is increased. The profiles obtained 

from the FCT method, however, exhibit a smooth behavior with no sign of oscillations. 

Non-Linear Case 

The comparison of numerical methods for the non-linear Burgers equation is illustrated 

in Figs. 4-7. For the cell Reynolds number less than 2.0, Fig. 4, all the four methods yield very 

similar results except for the different amount of numerical diffusion for each method. 



400 J.B. Yapo and S.K. Aggarwal Vol. 20, rNO. 3 

O 

° /  
¢0 

O 
1 

¢) 

O -  

O 
O 
¢D 

(a) Re = 1.43 

M C  "~ _ _ _ F C T  

.0 3.0 4.0 5.0 

X 

O 
¢5 
04 

O 

// 

0.0 1.0 0.0 1.0 

FIG. 2 

( b )  Re  = 10.0 
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Comparison of MacCormack and FCT Schemes for Linear Burgers Equation 
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FIG. 3 
Comparison of MacCormack and FCT Schemes for Linear 

Burgers Equation for High Cell Reynolds Number 

Again, the UW and FCT schemes exhibit the largest and smallest amounts of numerical diffusion 

respectively. In addition, the FCT scheme is able to preserve the initial profile better than the 

other three schemes. It is also noteworthy to mention that unlike the linear case the numerical 

diffusion, in addition to maidng the profile smoother, affects the wave speed for the non-linear 

case. For example, for the UW scheme which has the highest numerical diffusion, the wave 

speed is the lowest. 
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TABLE 2 
Numerical Huctuations for MacCormack and FCT Schemes 

X 

0.OO 

0.025 

0.05 

0.075 

0.100 

0.125 

0.150 

0.175 

1275 

2.300 

2.325 

2.350 

2.375 

2.400 

2.425 

2.450 

2.475 

1500 

1525 

Re,, = 2&5'7 

MC I ~ T  

loo.OO 100.OO 

loo.OO loo.OO 

loo.00 100.OO 

loo.OO 100.OO 

loo.OO 100.OO 

loo.OO loo.00 

99.999 99.999 

99.999 99.999 

99.972 99.999 

99.977 99.980 

loo.OO 99.980 

100.05 99.970 

100.12 99.920 

100.19 99.880 

100.23 99.870 

100.19 99.540 

100.01 99.180 

99.617 99.090 

98.943 98.600 

b ~  = 57.14 

MC 

200.00 

200.00 

200.00 

199.99 

199.99 

199.99 

199.98 

199.97 

199.95 

199.91 

199.88 

199.90 

199.98 

200.16 

200.40 

200.64 

200.75 

200.61 

200.61 

FL'W 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

199.80 

199.80 

199.60 

199.30 

198.70 

O 
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FIG.  4 
Resul t s  o f  Numer ica l  Exper imen t s  wi th  Non l inea r  Burgers  Equa t ion  results ,  ReA = 1.43 
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A more interesting comparison of the methods is observed for Re A greater than 2.0, as 

indicated in Figs. 5-7. As expected, at higher cell Reynolds numbers, the UW scheme is always 

stable but much more diffusive. On the other hand, the CD scheme becomes unstable almost 

immediately, specially for Re A = 10.0. The comparison of MC and FCT schemes, given in Figs. 

6-7, clearly demonstrates the superiority of FCT scheme. Not only the MC scheme has higher 

numerical diffusion, it also displays oscillatory behavior. Moreover, the magnitude of oscillations 

seems to increase as Re A is increased. Although the oscillations in the MC scheme do not grow 

in time to make the scheme unstable, they cannot be permitted in more realistic situations; for 

example in the simulation of a propagating flame or a detonation. The FCT scheme, on the other 

hand yields a stable and almost diffusion-free solution. 

° C )  o~-k , 0= ~ j b Re = 10.0 

0 

0 

0 
c~ 

( a / R e  = 3.57 

i C D  
, ~ . _ U W  
i . . . . . . .  M C  : : :) 

0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0 

X X 
HG. 5 

O 

Results of Numerical Experiments for Nonlinear Burgers Equation, Re A > 2 

Concluding Remarks 

Four numerical schemes have been evaluated for solving the linear and non-linear Burgers 

equations. The parameter varied is the mesh Reynolds number. The schemes are the upwind, 

the central difference, the MacCormack, and the flux corrected transport. The important 

conclusions are: 

1. For linear as well as non-linear cases and for a mesh Reynolds number not exceeding 

2.0, all the four schemes give almost identical results, except that the upwind scheme shows more 

numerical diffusion. 

2. For a cell Reynolds number greater than two, the central difference scheme, as 
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expected, is unstable for linear as well as non-linear Burgers equations. The oscillations are more 

= ( b )  Re = 10.0 O 
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FIG. 6 
Comparison of MacCormack and FCT Schemes for Nonlinear Burgers Equation, 2 < Re A ~;10 
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FIG. 7 
Comparison of MacCormack and FCT Schemes for Nonlinear Burgers Equation, R% > 10 

pronounced and appear earlier in time for the non-linear case. The upwind scheme always yields 

a stable solution but at the same time exhibits a significant amount of numerical diffusion. The 

amount of numerical diffusion increases as Re A is increased. The effect of this diffusion is to 

make the profiles smoother for the linear case. In the non-linear case, it also changes the 

effective wave speed. 

3. Perhaps a more interesting result is that for Re a greater than 2.0, the MacCormack 

scheme does not show any oscillations for the linear case. However, for the non-linear case, 
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numerical oscillations appear and become more pronounced as cell Reynolds number increases. 

Clearly, these oscillations are related to the non-linearity of  the equation. 

4. The FCT scheme exhibits the best behavior for the linear as well as non-linear cases. 

Not only the amount of  numerical diffusion is the least compared to the other three schemes, 

there are also no non-physical oscillations. The use of this scheme is, therefore recommended 

for more realistic numerical simulations. 
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Nomenclature 

c wave speed 

F flux 

N number of  points 

Re Reynolds number 

t time 

u velocity 

u m average velocity 

a diffusion coefficient 

At time step-size 

Ax spatial step-size 

non-dimensional numerical diffusion coefficient 

v non-dimensional numerical diffusion coefficient 
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