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Abstract-Numerical simulations of particle dispersion in a planar shear dominated by large scale vertical 
structures alre reported. The shear layer is formed by two co-flowing streams past a splitter plate. The 
emphasis of this work is on examining how the particle dynamics are affected by the large-scale coherent 
structures in the initial development of the instabilities in a spatially-developing mixing layer. The 
two-dimensional time-dependent gas-phase equations are solved numerically using the explicit flux 
corrected transport (FCT) algorithm in the low-Mach-number regime. The dispersion of particles is 
studied by following their trajectories in the shear layer. A detailed visualization of the flow field, 
dominated by the large structures, and of the particle dynamics is performed to obtain qualitative as well 
as quantitative information on the particle dispersion. The visualization clearly reveals the capturing of 
the small and intermediate size particles by the vertical structures. The small size particles, however, 
remain captured in the vertical structures, whereas the intermediate size particles are flung out of them, 
leading to their enhanced dispersion. The large particles remain mostly unaffected by the large eddies. The 
quantitative results obtained indicate that the above behavior can be well correlated with the Stokes 
number (S,) values; the optimal dispersion corresponds to the Stokes numbers in the range 0. I < S, < 5.0. 
This is in qualitative agreement with previously reported experimental as well as numerical results. The 
results also indicate that the particles injected in the faster stream exhibit higher dispersion compared to 
those injected in the slower stream. This divergence in the dispersion behavior is related to the asymmetric 
entrainment as reported by some earlier experimental and numerical studies. 

INTRODUCTION 

Particle-laden turbulent flows occur in numerous technological applications. These include many 
propulsion and energy conversion systems such as gas turbines, rocket engines and boilers, as well 
as industrial systems such as coating, painting and spray cooling devices. There are also many 
physiological and environmental situations involving two-phase turbulent flows. 

The traditional approaches for describing these flows have been based on obtaining the average 
behavior of the turbulent carrier fluid by using the time- or Favre-averaged governing equations 
along with some semi-empirical turbulence models. The dispersed phase is represented by a large 
number of discrete particles and their dynamic behavior is determined in a deterministic manner. 
The coupling between the phases is provided by the interaction terms, representing the exchange 
of mass, momentum and energy. These terms are continuously updated during the computation. 
The effect of turbulence on the particle trajectories or the dispersion effect is modeled either by 
imparting a diffusional velocity to the particles [l, 21 or by using a stochastic approach [3,4] to 
obtain a fluctuating gas (carrier fluid) velocity field that is added to the mean gas velocity field. 
In the latter app:roach, which is more commonly used, the turbulent (fluctuating) gas velocity is 
determined by alssuming that the turbulence is isotropic with a Gaussian distribution and the 
variance is given by 2k/3 where k is the turbulent kinetic energy. The variance is multiplied by a 
random number to yield the fluctuating velocity component. 

A number of experimental and computational studies [5-l 11, published during the last two 
decades, have shown that the turbulent flows, which previously were thought to be totally chaotic 
and statistical in nature, are dominated by large-scale coherent vertical structures. This has caused 
a major shift in thinking as to how the dynamics of turbulence be perceived and modeled. In fact, 
a number of important questions have been posed by these studies. How useful or relevant are the 
semi-empirical models based on the Reynolds or Favre-averaged approach? How strongly are the 
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mixing and entrainment processes influenced by the generation and evolution of the organized 
structures? How does the dynamic interaction of large-scale and small-scale structures (molecular 
mixing) determine the processes of chemical reaction, ignition, flame stability and extinction? How 
is particle dispersion behavior affected by the large-scale structures and in turn how are these 
structures influenced by the dispersed phase? Although the results reported in Refs [5-l l] and 
others have not provided satisfactory answers to these questions, they have seriously challenged 
the adequacy of the traditional approaches for accurately describing the turbulent two-phase flows. 

In this paper, the numerical simulations of particle dynamics and dispersion in a planar shear 
layer are reported. The shear layer formed downstream of a splitter plate is simulated by solving 
the time-dependent inviscid compressible conservation equations using the explicit Flux Corrected 
Transport (FCT) algorithm [12, 131. The numerical model is first used to predict the evolution of 
the Kelvin-Helmholtz instability, including the formation and subsequent merging of large-scale 
vortices in the early development of the instabilities in the mixing layer. Then, at a specified time 
which is a parameter in the study, the particles of given size and velocity are injected continuously 
from the specified locations in the cross stream direction. The dynamics and dispersion of these 
particles as influenced by the large scale structures are studied by solving the particle equations 
based on the Lagrangian approach. Numerical results are presented to highlight the particle 
dispersion caused by the coherent vertical structures. The results also indicate the selective nature 
of the dispersion process. Not only does the dispersion function depend on the particle size, it is 
also a function of the initial injection location in the cross-stream direction, which underscores the 
asymmetric nature of the mixing process, as well as of the time of injection. In addition, it is shown 
that the dispersion function does not decrease monotonically as the particle size is increased. The 
last result substantiates the findings of previous studies reviewed by Crowe et al. [lo] and of more 
recent experimental work reported by Lazaro and Lasheras [14, 151. 

Previous works on mixing layer simulations have employed spectral [ 16, 171, vortex dynamics [ 181 
and finite-difference [9, 13, 19,201 techniques. These studies have focused on the dynamics of 
large-scale structures either in temporally developing mixing layer [ 16, 171 or in spatially developing 
layers [l&20]. The former approach is computationally more efficient because of the relatively 
compact spatial domain. However, the spatially developing case resembles more closely to the 
laboratory as well as practical situations. Notable experimental studies pertinent to the present 
paper are due to Lazaro and Lasheras [l 1, 14, 151, and Hishida et al. [21]. Hishida et al. [21] 
investigated the dispersion of solid particles in a planar shear layer and observed a strong 
correlation between the particle dispersion and the Stokes number, defined as the ratio of the 
particle response time to the characteristic time of the large-scale eddies. For a range of Stokes 
number between 0.5 and 2.5, the particles were observed to disperse more significantly than the 
gas phase. Lazaro and Lasheras [14, 151 conducted a comprehensive experimental study of particle 
dispersion in unforced and forced planar mixing layers. For the unforced case, they used flow 
visualization and spectral analysis, and observed the central role played by the large-scale turbulent 
motion in the particle dispersion process. Unlike in the unforced shear layer, the particle dispersion 

Solitter I I 

t x 

Fig. 1. Schematic of the physical model and computational domain. 
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in the forced shear layer was shown to be a size-selective process characterized by the existence 
of an intermediate particle size range for which the lateral dispersion is maximized. The simulations 
presented in this paper also exhibit an intermediate droplet size range for the maximum lateral 
dispersion. A further comparison is provided later in the paper. Previous numerical studies 
[lo, 22,231 on the particle dynamics in turbulent mixing layers employing the discrete vortex 
approach have ailso been reported. The present work differs from those studies in the numerical 
approach employed. An important consequence of this difference is the asymmetric dispersion 
behavior which is not captured in the previous studies. There are other important differences as 
discussed later. In addition, a more general approach is followed in the present investigation such 
that other important phenomena such as the effect of forcing and vaporization on droplet 
dispersion as well as the effect of droplets on the dynamics of large-scale structures can be studied. 

The organization of the paper follows a standard format. The physical model and the governing 
equations are described next. This is followed by the discussion of the results. The conclusions are 
presented in the last section. 

THE PHYSICAL AND NUMERICAL MODEL 

A splitter-plate flow configuration is considered in the present study. Two cotlowing parallel 
streams with a velocity difference are considered at the trailing edge of a splitter plate. A schematic 
of the physical model and the computational domain marked by the broken line are shown in 
Fig. 1. The com:putational grid is given in Fig. 2. As indicated, a variable grid size is employed 
so as to locate more points in the initial region (0 < x < 3.6 cm) near the centerline where the 
instability first occurs and the coherent structures form. Due to the pairing and merging process, 
the spanwise vertical structures grow in size as they convect downstream. The grid size in x 
direction is continuously stretched downstream such that larger computational cells can be used 
to resolve the larger structures. In a similar way, the grid size in y direction is stretched further 
away from the centerline. 

The droplets of given size and velocity are injected at the specified locations in the cross-stream 
direction at the inflow boundary (X = 0). The instant when the droplet injection is first initiated 
and the period bletween two consecutive injections are considered as parameters in the study. The 
time-dependent governing equations for the conservation of gas-phase mass, momentum, and 
energy are: 

ap 
at’ -v.pv+sp 

$pV)=-VP-vp.vv+x 

aE 

at- - -V.VE-V.pV+S, 

(2) 

(3) 

where 

(4) 

Fig. 2. Variable grid system. 
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and 
P 

e=-. 
Y-1 

In the above equation, p is the density, p the pressure, e the internal energy, Y the velocity vector, 
and y the ratio of specific heats. The terms S,, S,, and S, represent, respectively, the source/sink 
terms due to the exchange of mass, momentum and energy with the dispersed phase. In the present 
study, these terms are negligible since only a few thousand particles with diameters less than 100 
microns are considered. In other words, an ultra-dilute two-phase flow is being simulated with only 
a one-way coupling, i.e. the particles are influenced by the gas phase and not vice versa. The 
dynamic equations governing the trajectory and velocity of a particle can be written as 

(6) 
dX 
P=v 
dt ’ 

4 dV 
-nr3p -2 =F 
3 ’ ’ dt 

(7) 

where X, and VP are, respectively, the position and velocity vectors for a particle represented by 
the subscript p, pp is the material density of the dispersed phase, and rp is the particle radius. The 
force F in equation (7) is assumed to be due to the drag force on the particle. This implies that 
the contribution of the flow non-uniformities, flow acceleration, and Basset history terms [24] to 
Fare assumed to be negligible in comparison with the drag term. This is, however, not a limitation 
of the present study. Moreover, as discussed by Faeth [25], these terms can be neglected when 

PPIP N 103. For the results presented here, pp = 1 .O g/cm3 whereas the initial gas density is assumed 
to be 1.182 x lop3 g/cm3. F is given by 

F=C,ixriplV- V,l(V- VP) 

where the drag coefficient C,, is assumed to be given by the solid sphere drag correlation [22] as 

and 

Re =GIV- V,lr, 
P 

P 

(9) 

(10) 

where p is the gas viscosity. 

Boundary conditions 

The free slip boundary conditions are specified at the top and the bottom boundaries of the 
computational domain. At the left boundary, the inflow density and velocity are specified, and the 
pressure is allowed to float by employing a zero-gradient condition. As discussed by Grinstein 
et al. [26], this allows the pressure at the inflow to adjust to the disturbances arriving from 
downstream and the feedback mechanism to retrigger the instability. The importance of feedback 
in subsonic shear flows in the laboratory has been noted earlier [7]. A step function as well as 
hyperbolic-tangent velocity profiles were used at the inflow boundary. The development and 
subsequent evolution of large-scale structures were found to be qualitatively insensitive to these 
velocity profiles. One such result showing the effect of initial velocity profiles on particle dispersion 
is discussed later in the paper. 

A subsonic flow simulation requires a special treatment of the boundary conditions at an outflow 
boundary. Zeroth order-extrapolations are employed for the density and velocities. The pressure 
at the guard cell, which is one grid length downstream of the last computational cell, is calculated 
by using 

Pg = Pn + <q - X” 1 hnb - P” >l<Xg - x0 > (11) 
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where the subscripts g and n refer, respectively, to the guard cell and the last cell in the 
computational domain. X is the location of the inflow boundary and pamb is the pressure far away 

from the outflow boundary. The above equation is obtained by interpolating the pressure values 
pn and &,,,-,b. Further discussion regarding these boundary conditions is provided by Grinstein 
et al. [13]. 

The initial conditions required for integrating the particle equations involve the specification of 
Xp and VP at a specified initial time. The initial particle velocity is assumed to be the same as that 
of the slow gas stream. The initial X position for all the particles is the inflow boundary, i.e. X, = 0, 
whereas the initial y position is varied in a parametric manner depending upon the number of 
injection locations. For the base case, five injection locations near the centerline in the cross-stream 
direction are specified. This means that starting at a specified initial time, which is a parameter in 
the study, five particles are injected with a specified frequency. The dynamics and dispersion 
behavior of these particles is then computed by numerically solving equations (6) and (7). Note 
that the solution of these equations is coupled dynamically with that of the gas-phase equations 
(l)-(4), which a:re being solved simultaneously. 

Numerical procedure 

The numerical scheme to solve the two-phase equations is based on a Eulerian-Lagrangian 
formulation. The algorithm to solve the Eulerian gas-phase equations is based on the Flux 
Corrected Transport (FCT) methodology. The particle equations are integrated using a second- 
order Runge-Kutta procedure. The generic algorithm employing the FCT procedure has been 
tested extensively for large-scale simulations of both nonreacting and reacting flows. It employs 
a time-step splitting monotone, finite-difference technique. To prevent dispersive errors and 
maintain positivity, FCT first adds a linear velocity-dependent diffusion to a higher-order 
approximation during convective transport. The added diffusion is then subtracted out during the 
antidiffusion stage. The FCT algorithm used was fourth-order phase-accurate. Since the code is 
based on the solution of a one-dimensional conservation equation, a direction-splitting technique 
is employed for multidimensional computations. The residual numerical diffusion of the algorithm 
can effectively emulate physical viscosity for laminar shear flows at moderately high Reynolds 
numbers [27]. Fo’r the (finest) gridding used in this work, the effective viscosity is of the order of 
air viscosity at STP. Another useful feature of the code is that the variable mesh size can be handled 
routinely since it employs a control-volume formulation. 

Starting at time t = 0, the gas-phase equations are integrated to simulate the dynamics of large 
scale vertical structures. At a specified time during this simulation, the particle injection is started. 
The trajectories of various particles are tracked by solving equations (6)--(7) by using a second-order 
Runge-Kutta method. Note that the particle positions in general do not coincide with the fixed 
gas-phase grid points. A two-dimensional interpolation is employed to calculate the gas-phase 
properties, such as velocities and density which appear in equations (Q(9), at the instantaneous 
particle positions. 

RESULTS AND DISCUSSION 

Shear layer simur’ation 

First, we describe the results of free shear layer simulation without the particles. These results 
focus on the tra.nsition from a uniform shear flow to a pair of vortices due to the (initial) 
Kelvin-Helmholtz instability mechanism, followed by subsequent vortex roll-ups due to a feedback 
mechanism [7,26], and vortex merging downstream. 

The computational domain and the non-uniform grid used in the simulation are shown in 
Fig. 2. The splitter plate is located upstream of the left boundary at y = 3.0 cm. Initially, the two 
streams are assumed to have the same pressure (1 atm) and temperature (298 K), and uniform 
velocities V, and Vr for the slow and fast streams respectively. For the base case, the slower stream 
is at the top, and the values of V, and V, are 20.0 m/s and 100 m/s respectively. As mentioned earlier, 
two velocity profiles considered at the inflow boundary are the step-velocity and the hyperbolic 
tangent-velocity profiles. Several test cases were run to establish the grid-independence of results 
and to study the effect of inflow velocity profiles. The two computational grids used for these tests 
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employed 200 x 90, 150 x 60 and 120 x 46 grid points respectively. The temporal step sizes used 
are 5.0 x 1O-7 and 2.5 x 10e7 s. For these spatial and temporal step sizes, the results were found 
to be relatively independent of the step sizes and the inflow velocity profiles. The grid independence 
was also determined by verifying the scaling of the results with the initial vorticity thickness, 0 
[28]. For the results presented here, a temporal step size = 5.0 x 10e7 s and 150 x 60 grid are 
employed. 

Figure 3 shows a sequence of vorticity contours at t = 0.9, 1.06 and 1.22 ms. The corresponding 
transverse velocity contours are shown in Fig. 4. The pairing and merging of two vortices as they 
convect downstream, and the formation of a new vortex upstream in the shear layer are clearly 
illustrated in these figures. The newly formed vortex then pairs with the previously merged vortices. 
Subsequent merging processes of this kind are responsible for the growth of the shear layer 
downstream. Another important feature of the mixing-layer development, inherently dependent on 
its spatially-evolving nature, is the asymmetric entrainment, by which there is more of the 
high-speed fluid entrained by the large-scale structures as compared to low-speed fluid. This is 
suggested in Fig. 3 by the gradual shift of the shear-layer center towards the slower side. This 
asymmetry, observed experimentally by Koochesfahani et al. [30] and in the simulations of 
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Table I. Stokes numbers vs particle diameters 

d, (pm) fp (ms) %I = ‘J’n s,, = ‘&I2 

2 0.012 0.07 4.05 
5 0.076 0.45 25.30 
IO 0.304 1.78 101.25 
25 1.897 II.14 632.80 
50 7.590 44.55 2531.25 

Grinstein et al. [13], influences the amount of relative dispersion experienced by the particles 
discussed later. An elegant discussion of asymmetric entrainment is also given by Dimotakis [29], 
where the excess entrainment of high-speed fluid is shown to be a result of the geometric progression 
of successive structures, a feature attributable only to a spatially developing layer. 

To obtain the natural instability frequency, the spectral analysis of the axial and transverse 
velocities recorded at selected spatial locations is performed. The dominant frequency correspond- 
ing to the shear layer roll-up or vortex shredding is observed to be 5860 Hz. The corresponding 
Strouhal number, S, =f O/U,,,, is 0.024, based on 0, and the mean velocity, U,,, = 60.0 m/s. This 
Strouhal number is in fairly good agreement with the value predicted for the most amplified mode 
by linear stability theory as well as with experimental measurements [31]. Moreover, in a separate 
study [32], the roll-up frequency was computed for a number of cases, where the mean velocity 
(or Reynolds number), velocity ratio, and initial momentum thickness were varied. The Strouhal 
number for all these cases ranged between 0.023 and 0.027, which is within the experimentally 
observed range. See, for example, Hussain and Hussain [31] who conducted a comprehensive 
experimental study of the mixing layer and reported the Strouhal number in the range 0.025-0.03 1. 

Particle dynamics simulations 

Figure 5 shows the trajectories of particles that are injected at the inflow boundary and traverse 
the unsteady flow field dominated by large scale vertical structures. For this case, the shear layer 
simulation is started at time t = 0 and the particles are injected at t = 2.4 ms. During this period, 
0 c t < 2.4 ms, the initial flow transient is nearly out of the computational domain and the 
large-scale structures have assumed a quasi-periodic behavior. The trajectories are computed from 
t = 2.4 to 7.2 ms by solving the gas-phase and the particle equations simultaneously. As indicated 
in the figure, the particle trajectories are strongly influenced by their size and injection location. 

POSITION Y = 4.5 cm 

6 
I 

0 4 8 12 16 20 
X, cm 

Fig. 6. Trajectories of particles with diameter = 0, 2, 5, 10, 25, and 50 pm injected at y = 4.5 cm. 
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In general, the small particles (d, < 5 pm) follow the tracer (gas) particles, whereas the large 
particles (d, > 25 ,um) remain relatively unaffected by the large scale structures as they convect 
through the shear layer. The intermediate size particles (d,, = 10 pm) exhibit very interesting 
behavior. Their trajectory, although completely different from that of the tracer particles, is 
strongly influenced by the larger-scale structures. In fact, depending upon the injection location, 
their trajectories are influenced even more strongly by the large-scale structures compared to that 
of tracer particles, i.e. they are dispersed more than the gas particles. This is clearly the case for 
10 pm particles injected at the tip of the splitter plate (v = 3.0 cm). As shown in Fig. 5(c), the 
dispersion of 10 kern particle is significantly greater than that of gas particle. As discussed by Yule 
[33] and Crowe el’ al. [lo], the intermediate size particles are entrapped by the large eddies and then 
dispersed into the potential flow due to the centrifugal action. On the other hand, the smaller 
particles remain trapped in the eddies. Thus, the present results provide further evidence that the 
intermediate size particles can disperse significantly more than the gas particles. The relative 
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Fig. 7. Snapshots of gas particle (d, = 0) positions at f = 3.2, 4.0, and 4.8 ms. The injection is started at 
2.4 ms and five particles are introduced at the left boundary after every 0.012 ms. The injection location 

are y, = 2.9, yz = 2.95, y, = 3.0, y, = 3.05, and y, = 3.1 cm. 
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Fig. 8. Snapshots of particle positions at t = 3.2, 4.0, and 4.8 ms. The particle diameter d, = 5 pm. The 
Stokes number S, = 0.45. Other parameters are the same as in Fig. 7. 

amount of dispersion, however, depends strongly on the location from where the particles are 
injected. This aspect is discussed further in the next section where the dispersion effect is 
quantified. 

Let us now represent the increased dispersion for the intermediate size particles in terms of the 
Stokes number, defined as the ratio of the particle response time to the characteristic flow time, i.e. 

The particle response time is generally defined [21] as 

(13) 

where p is the viscosity of the continuous phase. Note that this definition is based on the Stokes 
drag law [24] and would over-predict the particle response time in realistic situations. For example, 
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if equation (9) is employed for calculating the drag coefficient, it would yield a smaller value of 
t,. We will, however, use equation (13) for computing the Stokes number, since this is the accepted 
definition in literature. The particle response time as a function of the particle diameter is given 
in Table 1. The characteristic flow time in equation (12) may be defined in two different ways. One 
is to use the natural instability or the roll-up frequency defined earlier in terms of the Strouhal 
number So, which gives 

e 
trl = s, u, 

where 

D = 10 urn iniect = 24 A t 
time = 3.2 ms 

n Y5 
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time = 4.8 ms 

6 

0 4 8 12 16 20 

x, cm 
Fig. 5’. Snapshots of particle positions at f = 3.2, 4.0, and 4.8 ms. d, = IO pm, S, = 1.78. 

(14) 
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D=20pm inject = 24 At 

time = 3.2 ms 

6s 

time = 4.0 ms 
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0 4 8 12 16 20 
x,cm 

6 , 

time = 4.8 ms 

0 4 8 12 16 20 
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Fig. 10. Snapshots of particle positions at t = 3.2, 4.0, and 4.8 ms. d, = 20 pm, S, = 7.12. 

The other way is to employ the initial strain rate, defined as (V, - VJO, where 0 is the smallest 
grid size in the transverse direction. This gives 

For the particle sizes considered, we have calculated the Stokes number using both the 
characteristic flow times. The results are summarized in Table 1. There are two important 
observations from the table. First, the correct time scale to be used for calculating the Stokes 
number should be based on the natural instability frequency, and not the initial (maximum) strain 
rate. Perhaps, the appropriate length scale for defining the strain rate in equation (15) should be 
the characteristic size (A) of the large scale structures. Then, by replacing 0 by I and equating 
equations (14) and (15), one obtains 

(16) 
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which states that the large eddy size can be represented in terms of the initial strain rate and the 
natural instability frequency. Using the values for the base case, the non-dimensional eddy size 
A./@ = 56.9, yielding 1 = 1.37 cm, which agrees with the value estimated from the vorticity contour 
plots. 

The second important observation is the remarkable degree of correlation between the enhanced 
particle dispersia’n and the values of the Stokes number in the range 0.1 < S, < 5. For example, for 
the 10 pm particle, the value of the Stokes number is 1.78. For S, < 0.1, the particles closely follow 
the large scale vertical structures, as shown in Fig. 5. For S, > 5.0, corresponding to dP = 25 and 
50pm, the particles are relatively unaffected by the large scale structures. This observation is 
consistent with tlhe results of Chein and Chung [22]. Note, however, that in the present study, the 
time scale of the large scale structures is calculated from the roll-up frequency obtained numerically, 
whereas in the cited reference, it is based on the width of the mixing layer. In addition, the present 
results indicate the asymmetric nature of the dispersion enhancement phenomenon. The intermedi- 
ate size particles (0.1 < S, < 5.0) injected into the fast stream (y < 3.0 cm) exhibit a greater degree 
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Fig. 1 I. Snapshots of particle positions at I = 3.2, 4.0, and 4.8 ms. d, = 50 pm, S, = 44.55. 
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of dispersion compared to those injected into the slow stream ( y < 3.0 cm). This is clearly indicated 
by the comparison of particle trajectories in Figs 5(a) and 6. The particles injected from y = 1.5 cm 
[Fig. 5(a)] are dispersed much more than those injected from y = 4.5 cm (Fig. 6), although the 
injection location relative to the splitter plate ( y = 3.0 cm) is the same for both cases. The difference 
in the degree of dispersion is related to the asymmetry of the entrainment process discussed earlier. 

Let us summarize the important observations emerging from the results presented so far. First, 
the effect of large vertical structure is to enhance significantly the dispersion of intermediate size 
particles. The degree of enhancement, however, depends upon the transverse injection location 
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Fig. 12. Vorticity contours at t = 2.4, 3.2, 4.0, and 4.8 ms. 
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Fig. 14. Variation of particle dispersion function with time t for an established as well as a developing 
shear layer. Particle sizes are 0 (gas particles), 5, 10, 20, and 50pm. (a) Particles injected for period 

2.4 < f < 4.8 ms; (b) particles injected for period 0.5 -C t < 2.9 ms. 

relative to the splitter plate. Not only is the distance from the splitter plate important, but also 
from which side of the plate, the particles are injected, plays a significant role in the relative 
enhancement of dispersion. The particles injected on the high-speed side are dispersed more 
compared to these injected on the low-speed side. This is due to the asymmetry of the mixing 
process as discussed earlier. Second, the enhanced dispersion for the intermediate size particles 
can be correlated to the Stokes number range 0.1 < S, < 5. It is important to note, however, that 
the calculation of the Stokes number is based on the natural instability frequency of the shear 
layer. 

Particle dispersion results 

In order to quantify the particle dispersion behavior, a continuous injection of particles from 
the upstream boundary is simulated. Again the flow computation is started at t = 0, and the particle 
injection is started at 2.4 ms. As mentioned earlier, by this time, the initial transient is out of the 
computational domain and the flow field is nearly developed. The time interval between two 
consecutive injections is 0.012 ms, i.e. starting at t = 2.4 ms, a fixed number of particles are injected 
into the flow field after every 0.012 ms. Note that the characteristic flow time obtained from the 
natural instability frequency is 0.171 ms, which corresponds to 14 injections. 
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The results of this simulation from t = 2.4 to 4.8 ms are portrayed in Figs 7-l 1. In order to 
understand these results better, the unsteady shear layer development is shown in Figs 12 and 13, 
where the vorticity and transverse velocity contours are plotted at different times. For the results 
shown in Figs 7-l 1, the particles are injected from five transverse locations; y = 2.9,2.95, 3.0, 3.05, 
and 3.10 cm. Figure 7 shows the snapshots of gas particle (d, = 0) positions at three different times, 
t = 3.2, 4.0, and 4.8 ms respectively. For dP = 0, these snapshots are more commonly referred to 
as the streamlines. The corresponding results for particles of diameter of 5, 10, 20, and 50 pm are 
given in Figs 8-l 1. The Stokes numbers corresponding to these diameters are 0.45, 1.78, 7.12 and 
44.55 respectively. Note that at t = 4.8 ms, there are 1000 particles in the flow field for each case. 

The streaklines for gas particles at t = 4.8 ms in Fig. 7 further show the growth of the shear layer 
due to the processes of vortex roll-up and merging. These processes can also be visualized by the 
vorticity contours in Fig. 12, and the transverse velocity contours plots in Fig. 13. A more 
important observation is the greater amount of dispersion exhibited by the intermediate size 
particles (S, = 0.45 and 1.78) compared to that by the gas particles. This can be clearly seen by 
comparing Figs 8 and 9, which correspond to S, = 0.45 and 1.78 respectively, with Fig. 7. For high 
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Stokes numbers, S, = 49.28, the amount of dispersion (see Figs 10 and 11) is small compared to 
that of the gas particles. In order to quantify the amount of dispersion, the dispersion function 
[23] is defined as 

where N is the total number of particles in the flowfield at time t, yi the transverse location of 
particle i at time t, and y, the transverse location of the same particle at the inflow boundary. It 
can be expected that the dispersion function is a strong function of t and the particle diameter d,,. 
In addition, it may be a function of the initial particle location, y,, the total number of particle 
N, and the time when the injection is started. Figure 14 shows the variation of the dispersion 
function with time in an established shear layer for various particle sizes. The Stokes numbers for 

20 m/s 

0.8 
- 100 m/s 

--+-- 20-100 m/s 

3 
= 0.6- 
ti 

4 

a 0.4 - 

0.2 - 

3 
t, ms 

4 

Fig. 17. Dispersion function plotted versus time for different initial particle velocities for 5.0 pm particles. 
Case 1: particles injected at 20.0 m/s, Case 2: particles injected at 100.0 m/s, Case 3: particles injected at 

the local gas velocity. 



56 S. K. Aggarwal PI al. 

the sizes considered are 0, 0.45, 1.78, 7.12, and 44.45 corresponding to the diameters 0, 15, 10, 20, 
and 50 pm. The important observations are as follows: 

(9 

(ii) 

(iii) 

(iv) 

The dispersion function generally increases with time since the particles disperse increasing 
farther from their injection location. For smaller particles, the variation is somewhat irregular 
indicating the greater influence of the large scale structures on particles. As the particle size 
increases, the variation of D(y, t) becomes more regular. 
The variation of D(y, t) with the particle size clearly demonstrates the enhancement of 
particle dispersion in the intermediate size range. At earlier times, the dispersion seems to be 
the highest for the 5 pm particles (S, = 0.45). At later times, however, the 10 pm particles 
(S, = 1.78) exhibit the highest amount of dispersion. 
The quantitative results presented in Fig. 14 are consistent with the qualitative results given 
in Fig. 5 and Figs 7-l 1. They are also in agreement qualitatively with the results of Chung 
and Troutt [23] on the dispersion of particles in an axisymmetric jet. 
Another important parameter influencing the dispersion function is the instant at which the 
particle injection is started. The dependence of the dispersion function on the particle size 
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Fig. 18. Effect of the total number of particles (a) and the inflow gas velocity profiles (b) on the particle 
dispersion. The particle diameter = 5.0 pm. 
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changes significantly, if the particles are injected during the early shear layer development. 

As shown in Fig. 14(b), the dispersion function does not seem to maximize for the 
intermediate values of the Stokes number, which is in complete contrast with the more 
developed shear layer case [Fig. 14(a)]. 

(v) As indicated in Fig. 15(a), the dispersion function also varies with the particle injection 
location. ‘The particles injected in the fast stream (y,, < 3.0 at time t = 0) disperse more 
compared to those injected in the slow stream (y,, > 3.0). This difference in dispersion is 
related to the asymmetry of the entrainment process discussed earlier. The asymmetric 
dispersion behavior can also be demonstrated by plotting the normalized particle distribution 
(P,) as a function of the cross stream location, shown in Fig. 15(b). Here P, is defined as 
the probability of having a particle in a given cross stream region. Note that all the particles 
are injected from cross stream locations between 2.96 < Y, < 3.04 cm, the region marked by 
two broken lines in Fig. 15(b). Without dispersion, all the particles would be confined to this 
region, and P, will maintain a value of 1 .O there and zero outside. Due to dispersion, however, 
the distribution curve would become broader with a lower peak. The important observation 
is that the ‘distribution curve is asymmetric, indicating more particles on the slow stream side 
(Y > 3.0 cm) compared to the fast stream side. 

In order to quantify the effect of particle size on dispersion, the dispersion function is plotted 
versus Stokes number for three different particle densities. For this plot shown in Fig. 16, the 
dispersion function is averaged both spatially and temporally over all the particles injected from 
a fixed location. Important observations are that the particle dispersion exhibits a maximum near 
S, = 0.5 and that the use of initial instability frequency provides the expected correlation between 
dispersion function and Stokes number. The results presented so far are for particles injected with 
the local gas velocity of slow stream. The effect of particle injection velocity on dispersion is 
portrayed in Fig. 17, where the dispersion function for the 5.0lm particles is plotted for three 
different cases. The figure clearly indicates that, for the configuration considered, the particle 
injection velocity does not influence the dispersion behavior significantly. In this context, it is 
interesting to mention the more recent work of Wang [34], where it is shown that the dispersion 
behavior can be altered by nonuniform injection of particles. However, the nonuniformity is 
introduced by controlling the particle number density, and, therefore, represents a different 
situation compared to that considered here. Another important result is shown in Fig. 18. The effect 
of the total number of particles on the particle dispersion function, given in Fig. 18(a), clearly 
indicates that the number of particles considered in obtaining the particle dispersion function is 
sufficient. For the two cases shown in Fig. 18(a), there are 1000 and 2000 particles respectively. 
The effect of the inflow gas velocity profiles on dispersion shown in Fig. 18(b) indicates that the 
numerical results are relatively insensitive to the two velocity profiles considered. This implies that 
the dynamics of large scale vertical structures and of particles is relatively independent of the two 
velocity profiles considered. 

CONCLUSION 

In this study, the numerical simulations of particle dynamics and dispersion in the initial 
development of the planar shear layer are reported. The shear layer which is formed by two 
coflowing streams downstream of a splitter plate is simulated by solving the time-dependent inviscid 
compressible conservation equations. The numerical algorithm is based on the explicit flux 
corrected transport procedure. A Lagrangian approach is employed to study the particle dynamics 
and dispersion in the large-scale vertical structures. An extensive visualization of the flow field, 
dominated by the large structures, and of the particle trajectories is performed to obtain both 
qualitative and quantitative information on the particle dispersion behavior. 

The first part of the simulation focuses on the temporal and spatial growth of the shear layer. 
As expected, the results on the generation of vorticity clumps due to the Kelvin-Helmholtz 
instability, and on the growth of shear layer due to vortex pairing agree with those of Grinstein 
et al. [13]. The spectral analysis of the pressure and velocity histories at selected spatial locations 
in the shear layer is used to obtain the natural instability frequency and its subharmonics. 
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The results of the particle dynamics simulations indicate that both small and moderate size 
particles (0 < d, < 20 pm) are captured in the vertical structures. While the small size particles, 
d, < 2 pm, remain captured in these structures, the moderate size particles may be flung out of 
them, causing these particles to disperse more than the tracer (gas) particles. The larger particles 
remain relatively unaffected by the large structures. The quantitative results, presented in terms of 
a dispersion function D(y, t) as a function of time and the Stokes number, substantiates these 
observations. The optimal dispersion is achieved when the Stokes number is in the range 
0.1 < S, < 5.0. These results are in qualitative agreement with the experimental as well as numerical 
results reported previously. Another important observation is the dependence of the dispersion 
function on the transverse injection location. The particles injected in the fast stream disperse more 
than those injected in the slow stream. This behavior is attributable to the asymmetry of the 
entrainment process observed here as well as in the experiments of Koochesfahani et al. [30] and 
the simulations of Grinstein et al. [13]. 

As a final note, it is important to mention that the present results compare favorably with those 
of laboratory experiments in many respects. This includes the Strouhal number for the roll-up 
frequency (the predicted Strouhal number of a number of cases is in the range 0.023-0.027, whereas 
the experimental range reported [31] is 0.025-0.031) and the asymmetric entrainment in the shear 
layer [29]. In addition, the present simulations show greater dispersion for the intermediate size 
particle as well as for particles injected in the high-speed fluid. Both of these features have also 
been observed in the experimental study of Lazaro and Lasheras [14,15], except that in the cited 
study, the greater dispersion for the intermediate size particles was noted for the forced shear layer. 
The general result regarding the greater dispersion of intermediate size particles is also reported 
in several earlier experimental studies, reviewed by Crowe et al. [lo], and in recent studies by Lazaro 
and Lasheras [14, 151 and Hishida et al. [21]. In particular, the predicted Stokes number for the 
maximum dispersion in our study is 0.49. This is in agreement with the experimental results of 
Lazaro and Lasheras [14,15] that yield a droplet size range 21-35 pm or a Stokes number range 
0.18-0.5 for the maximum dispersion. Hishida et al. [21] observed enhanced dispersion for 42.0 pm 
glass particles, yielding a Stokes number of 1.28, based on the dominant frequency reported in their 
experiments. However, the smallest particle size considered in the experimental study [21] was 
42 pm; it is conceivable that the maximum dispersion could have occurred at a lower Stokes 
number. The present results are also in agreement with the previous numerical predictions on 
particle dispersion. In particular, Chein and Chung [22] observed the existence of an inter- 
mediate particle size range for which the dispersion is maximized. The features that distinguish the 
present work from that cited above are as follows: (i) the large eddy simulation in the present study 
is based on the finite-difference flux-corrected transport algorithm, whereas the cited work has 
employed a discrete vortex method; (ii) a consequence of this difference is the asymmetric 
particle dispersion observed in the present results, but not captured in the discrete vortex 
approach; and (iii) a correlation is provided between the Stokes number and the shear layer 
roll-up frequency. To our knowledge, the last two features have not been reported by previous 
studies. 
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